The United States coastline spans 95,471 miles; a distance that cannot be effectively patrolled or secured by manual human effort alone. Unmanned Aerial Vehicles (UAVs) equipped with infrared cameras and deep-learning based algorithms represent a more efficient alternative for identifying and segmenting objects of interest - namely, ships. However, standard approaches to training these algorithms require large-scale datasets of densely labeled infrared maritime images. Such datasets are not publicly available and manually annotating every pixel in a large-scale dataset would have an extreme labor cost. In this work we demonstrate that, in the context of segmenting ships in infrared imagery, weakly-supervising an algorithm with sparsely labeled data can drastically reduce data labeling costs with minimal impact on system performance. We apply weakly-supervised learning to an unlabeled dataset of 7055 infrared images sourced from the Naval Air Warfare Center Aircraft Division (NAWCAD). We find that by sparsely labeling only 32 points per image, weakly-supervised segmentation models can still effectively detect and segment ships, with a Jaccard score of up to 0.756.
translated by 谷歌翻译
深图像先验(DIP)是一种最近提出的技术,用于通过将重建图像拟合到未经训练的卷积神经网络的输出中来解决成像反问题。与预处理的前馈神经网络不同,相同的倾角可以概括为任意逆问题,从降级到阶段检索,同时在每个任务下提供竞争性能。DIP的主要缺点是,虽然前馈神经网络可以在单个通行证中重建图像,但DIP必须以大量的计算成本逐渐更新数百到数千个迭代的权重。在这项工作中,我们使用元学习来大规模加速基于倾斜的重建。通过学习浸入权重的适当初始化,我们证明了在一系列逆成像任务中的运行时间有10倍的改善。此外,我们证明了一个经过训练以快速重建面孔的网络也将其推广以重建自然图像贴片。
translated by 谷歌翻译
为了解决逆问题,已经开发了插件(PNP)方法,可以用呼叫特定于应用程序的DeNoiser在凸优化算法中替换近端步骤,该算法通常使用深神经网络(DNN)实现。尽管这种方法已经成功,但可以改进它们。例如,Denoiser通常经过设计/训练以消除白色高斯噪声,但是PNP算法中的DINOISER输入误差通常远非白色或高斯。近似消息传递(AMP)方法提供了白色和高斯DEOISER输入误差,但仅当正向操作员是一个大的随机矩阵时。在这项工作中,对于基于傅立叶的远期运营商,我们提出了一种基于普遍期望一致性(GEC)近似的PNP算法 - AMP的紧密表弟 - 在每次迭代时提供可预测的错误统计信息,以及新的DNN利用这些统计数据的Denoiser。我们将方法应用于磁共振成像(MRI)图像恢复,并证明其优于现有的PNP和AMP方法。
translated by 谷歌翻译
我们提出了一种通过大气湍流(称为Turbugan)进行成像的自我监督和自我校准的多拍方法。我们的方法不需要配对的训练数据,适应湍流的分布,利用特定于域的数据先验,并且可以从数十万概括到数千个测量值。我们通过适合Cryogan的对抗传感框架来实现此类功能,该框架使用歧视网络来匹配捕获和模拟测量的分布。我们的框架是通过(1)概括向前测量模型以通过跨界湍流来纳入照明传播的物理准确和计算有效模型的基础上的,(2)使适应性略有指定的远期模型,以及(3)利用域特异性域的先验知识先验知识的先验知识。使用预验证的生成网络,如果可用。我们在计算模拟和实验捕获的图像上验证了Turbugan,并用各种湍流扭曲。
translated by 谷歌翻译
There are multiple scales of abstraction from which we can describe the same image, depending on whether we are focusing on fine-grained details or a more global attribute of the image. In brain mapping, learning to automatically parse images to build representations of both small-scale features (e.g., the presence of cells or blood vessels) and global properties of an image (e.g., which brain region the image comes from) is a crucial and open challenge. However, most existing datasets and benchmarks for neuroanatomy consider only a single downstream task at a time. To bridge this gap, we introduce a new dataset, annotations, and multiple downstream tasks that provide diverse ways to readout information about brain structure and architecture from the same image. Our multi-task neuroimaging benchmark (MTNeuro) is built on volumetric, micrometer-resolution X-ray microtomography images spanning a large thalamocortical section of mouse brain, encompassing multiple cortical and subcortical regions. We generated a number of different prediction challenges and evaluated several supervised and self-supervised models for brain-region prediction and pixel-level semantic segmentation of microstructures. Our experiments not only highlight the rich heterogeneity of this dataset, but also provide insights into how self-supervised approaches can be used to learn representations that capture multiple attributes of a single image and perform well on a variety of downstream tasks. Datasets, code, and pre-trained baseline models are provided at: https://mtneuro.github.io/ .
translated by 谷歌翻译
Remote sensing imagery provides comprehensive views of the Earth, where different sensors collect complementary data at different spatial scales. Large, pretrained models are commonly finetuned with imagery that is heavily augmented to mimic different conditions and scales, with the resulting models used for various tasks with imagery from a range of spatial scales. Such models overlook scale-specific information in the data. In this paper, we present Scale-MAE, a pretraining method that explicitly learns relationships between data at different, known scales throughout the pretraining process. Scale-MAE pretrains a network by masking an input image at a known input scale, where the area of the Earth covered by the image determines the scale of the ViT positional encoding, not the image resolution. Scale-MAE encodes the masked image with a standard ViT backbone, and then decodes the masked image through a bandpass filter to reconstruct low/high frequency images at lower/higher scales. We find that tasking the network with reconstructing both low/high frequency images leads to robust multiscale representations for remote sensing imagery. Scale-MAE achieves an average of a $5.0\%$ non-parametric kNN classification improvement across eight remote sensing datasets compared to current state-of-the-art and obtains a $0.9$ mIoU to $3.8$ mIoU improvement on the SpaceNet building segmentation transfer task for a range of evaluation scales.
translated by 谷歌翻译
Wireless Sensor Network (WSN) applications reshape the trend of warehouse monitoring systems allowing them to track and locate massive numbers of logistic entities in real-time. To support the tasks, classic Radio Frequency (RF)-based localization approaches (e.g. triangulation and trilateration) confront challenges due to multi-path fading and signal loss in noisy warehouse environment. In this paper, we investigate machine learning methods using a new grid-based WSN platform called Sensor Floor that can overcome the issues. Sensor Floor consists of 345 nodes installed across the floor of our logistic research hall with dual-band RF and Inertial Measurement Unit (IMU) sensors. Our goal is to localize all logistic entities, for this study we use a mobile robot. We record distributed sensing measurements of Received Signal Strength Indicator (RSSI) and IMU values as the dataset and position tracking from Vicon system as the ground truth. The asynchronous collected data is pre-processed and trained using Random Forest and Convolutional Neural Network (CNN). The CNN model with regularization outperforms the Random Forest in terms of localization accuracy with aproximate 15 cm. Moreover, the CNN architecture can be configured flexibly depending on the scenario in the warehouse. The hardware, software and the CNN architecture of the Sensor Floor are open-source under https://github.com/FLW-TUDO/sensorfloor.
translated by 谷歌翻译
The literature on fraud analytics and fraud detection has seen a substantial increase in output in the past decade. This has led to a wide range of research topics and overall little organization of the many aspects of fraud analytical research. The focus of academics ranges from identifying fraudulent credit card payments to spotting illegitimate insurance claims. In addition, there is a wide range of methods and research objectives. This paper aims to provide an overview of fraud analytics in research and aims to more narrowly organize the discipline and its many subfields. We analyze a sample of almost 300 records on fraud analytics published between 2011 and 2020. In a systematic way, we identify the most prominent domains of application, challenges faced, performance metrics, and methods used. In addition, we build a framework for fraud analytical methods and propose a keywording strategy for future research. One of the key challenges in fraud analytics is access to public datasets. To further aid the community, we provide eight requirements for suitable data sets in research motivated by our research. We structure our sample of the literature in an online database. The database is available online for fellow researchers to investigate and potentially build upon.
translated by 谷歌翻译
JamPatoisNLI provides the first dataset for natural language inference in a creole language, Jamaican Patois. Many of the most-spoken low-resource languages are creoles. These languages commonly have a lexicon derived from a major world language and a distinctive grammar reflecting the languages of the original speakers and the process of language birth by creolization. This gives them a distinctive place in exploring the effectiveness of transfer from large monolingual or multilingual pretrained models. While our work, along with previous work, shows that transfer from these models to low-resource languages that are unrelated to languages in their training set is not very effective, we would expect stronger results from transfer to creoles. Indeed, our experiments show considerably better results from few-shot learning of JamPatoisNLI than for such unrelated languages, and help us begin to understand how the unique relationship between creoles and their high-resource base languages affect cross-lingual transfer. JamPatoisNLI, which consists of naturally-occurring premises and expert-written hypotheses, is a step towards steering research into a traditionally underserved language and a useful benchmark for understanding cross-lingual NLP.
translated by 谷歌翻译
This white paper lays out a vision of research and development in the field of artificial intelligence for the next decade (and beyond). Its denouement is a cyber-physical ecosystem of natural and synthetic sense-making, in which humans are integral participants$\unicode{x2014}$what we call ''shared intelligence''. This vision is premised on active inference, a formulation of adaptive behavior that can be read as a physics of intelligence, and which inherits from the physics of self-organization. In this context, we understand intelligence as the capacity to accumulate evidence for a generative model of one's sensed world$\unicode{x2014}$also known as self-evidencing. Formally, this corresponds to maximizing (Bayesian) model evidence, via belief updating over several scales: i.e., inference, learning, and model selection. Operationally, this self-evidencing can be realized via (variational) message passing or belief propagation on a factor graph. Crucially, active inference foregrounds an existential imperative of intelligent systems; namely, curiosity or the resolution of uncertainty. This same imperative underwrites belief sharing in ensembles of agents, in which certain aspects (i.e., factors) of each agent's generative world model provide a common ground or frame of reference. Active inference plays a foundational role in this ecology of belief sharing$\unicode{x2014}$leading to a formal account of collective intelligence that rests on shared narratives and goals. We also consider the kinds of communication protocols that must be developed to enable such an ecosystem of intelligences and motivate the development of a shared hyper-spatial modeling language and transaction protocol, as a first$\unicode{x2014}$and key$\unicode{x2014}$step towards such an ecology.
translated by 谷歌翻译